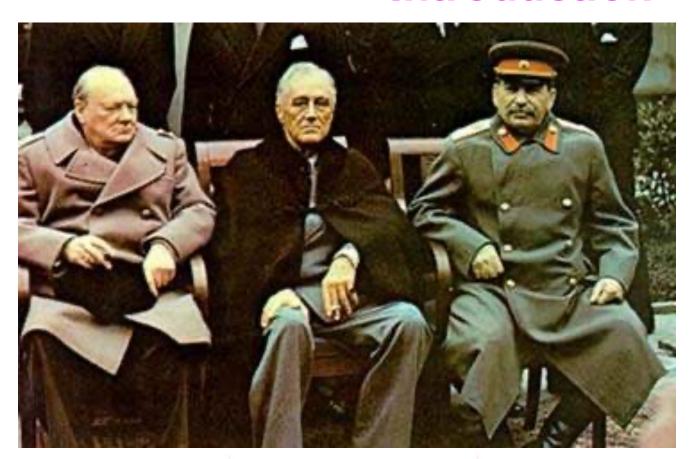


Update Guideline on management for Carotid stenosis: CEA vs BMT, CEA vs CAS

Do Kim Que MD, PhD Thong Nhat Hospital, Viet Nam

Introduction


- Stroke is the 3rd cause of death but the 1st disability for peoples.
 - In USA > 700.000 new cas. / year.
 - In Europe, 1.4 milion cas. / year, 1.1 million death/ year.
 - Vietnam, 200.000 cas./ year.
- Carotid stenosis is one of leading cause stroke.
 - 20 30% of stroke due to carotid stenosis.

Introduction

Introduction

- 5 12% new stroke have indication for CEA.
- Benefit of CEA to prevent stroke for patients with carotid stenosis have been proved.
- Need more trials: BMT vs CAS vs CEA? How to do CAS, CEA?

ARTICLE IN PRESS

(5th April 2022)

Eur J Vasc Endovasc Surg (xxxx) xxx, xxx

CLINICAL PRACTICE GUIDELINE DOCUMENT

European Society for Vascular Surgery (ESVS) 2023 Clinical Practice Guidelines on the Management of Atherosclerotic Carotid and Vertebral Artery Disease

Ross Naylor a, Barbara Rantner a, Stefano Ancetti a, Gert J. de Borst a, Marco De Carlo a, Alison Halliday a, Stavros K. Kakkos a, Hugh S. Markus a, Dominick J.H. McCabe a, Henrik Sillesen a, Jos C. van den Berg a, Melina Vega de Ceniga a, Maarit A. Venermo a, Frank E.G. Vermassen a

ESVS Guidelines Committee ^b, George A. Antoniou, Frederico Bastos Goncalves, Martin Bjorck, Nabil Chakfe, Raphael Coscas, Nuno V. Dias, Florian Dick, Robert J. Hinchliffe, Philippe Kolh, Igor B. Koncar, Jes S. Lindholt, Barend M.E. Mees, Timothy A. Resch, Santi Trimarchi, Riikka Tulamo, Christopher P. Twine, Anders Wanhainen

Document Reviewers ^c, Sergi Bellmunt-Montoya, Richard Bulbulia, R Clement Darling, III, Hans-Henning Eckstein, Athanasios Giannoukas, Mark J.W. Koelemay, David Lindström, Marc Schermerhorn, David H. Stone

Recommendation 1	Class	Level	References
Duplex ultrasound (as first-line), computed tomographic	1	A	18
angiography and/or magnetic resonance angiography are			
recommended for evaluating the extent and severity of			
extracranial carotid stenoses			
Recommendation 2			
When carotid endarterectomy is being considered, it is	1	A	18
recommended that Duplex ultrasound stenosis estimation be			
corroborated by computed tomographic angiography or			
magnetic resonance angiography, or by a repeat Duplex			
ultrasound performed by a second operator			
Recommendation 3			
When carotid stenting is being considered, it is	1	A	18
recommended that any Duplex ultrasound study be followed			
by computed tomographic angiography or magnetic			
resonance angiography which will provide additional			
information on the aortic arch, as well as the extra- and			
intracranial circulation			
Recommendation 4			
Units who base management decisions on Duplex ultrasound	1	С	12,14
stenosis measurement should state which measurement			
method is being used			
Recommendation 5			
Intra-arterial digital subtraction angiography should not be	III	A	18
performed in patients being considered for revascularisation,			
unless there are significant discrepancies on non-invasive			
imaging			

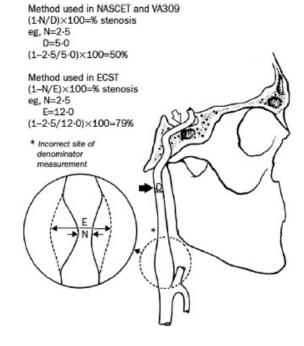


Table 1. Diagnostic velocity criteria for NASCET-based carotid stenosis measurement.

% stenosis NASCET	PSV ICA cm/s	PSV _{ICA} / PSV _{CCA} ratio	St Mary's ratio ¹⁵ PSV _{ICA} /EDV _{CCA}
	<125 ¹⁶	<2 ¹⁶	
<50%		-	<8
50-69%	\geq 125 ¹⁶	2.0—4 ¹⁶	8-10
60-69%			11-13
70-79%	\geq 230 ¹⁶	\geq 4 ¹⁶	14-21
80-89%			22-29
>90% but not	\geq 400 ¹⁶	≥5 ¹⁷	≥30
near occlusion			
Near-occlusion	High, low — string flow	Variable	Variable
Occlusion	No flow	Not applicable	Not applicable

Reproduced with permission from Oates C, Naylor AR, Hartshorne T, Charles SM, Humphries K, Aslam M, Khodabaksh P. Reporting carotid ultrasound investigations in the United Kingdom. Eur J Vasc Endovasc Surg 2009;37:251—61.

Carotid Endarterectomy vs BMT

Table 18. Individual patient meta-analysis of five year risks of any stroke, including peri-operative stroke or death, from European Carotid Surgery Trial (ESCT), North American Symptomatic Carotid Endarterectomy Trial (NASCET), and Symptomatic Veterans Affairs Carotid Study (SVACS) randomised controlled trials

Stenosis severity, NASCET – %	Patients – n	5 y risk of any stroke (including peri-op stroke) $-\%$				to the transfer of the first transfer of the	Strokes prevented per 1 000 CEAs at 5 y
		CEA + BMT	BMT				
0-30	1 746	18.4	15.7	-2.7	N/b	N/b	None
30-49	1 429	22.8	25.5	+2.7	N/b	N/b	27
50-69	1 549	20.0	27.8	+7.8	28	13	78
70-99	1 095	17.1	32.7	+15.6	48	6	156
CNO	262	22.4	22.3	-0.1	N/b	N/b	None

CEA = carotid endarterectomy; BMT = best medical therapy; ARR = absolute risk reduction in stroke; RRR = relative risk reduction in stroke; NNT = number needed to treat to prevent one stroke at five years; N/b = no benefit; CNO = chronic near occlusion.

* Data derived from the Carotid Endarterectomy Trialists Collaboration.

Recommendation 35	Class	Level
Carotid endarterectomy is recommended in patients reporting	1	Α
carotid territory symptoms within the preceding 6 months and		
who have a 70-99% carotid stenosis, provided the documented		
procedural death/stroke rate is < 6%		
Recommendation 36		
Carotid endarterectomy should be considered in patients	lla	Α
reporting carotid territory symptoms within the preceding 6		
months and who have a 50-69% carotid stenosis, provided the		
documented procedural death/stroke rate is <6%		

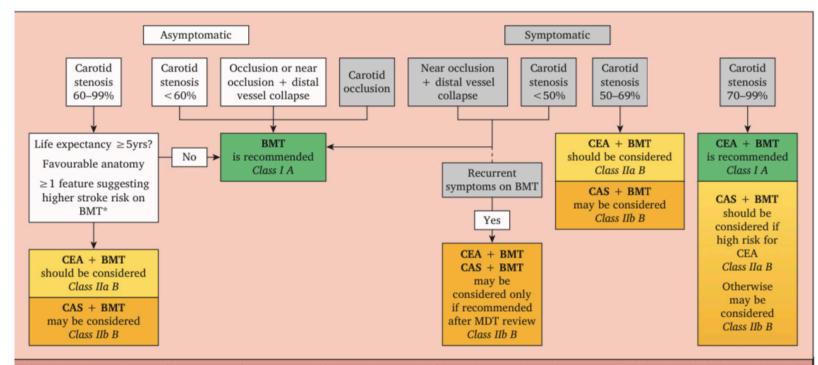


Figure 2. Management of "average risk" patients with asymptomatic and symptomatic carotid stenoses with best medical therapy (BMT), carotid endarterectomy (CEA), and/or carotid artery stenting (CAS). See Table 8 for imaging/clinical criteria that confer an increased risk of stroke on BMT.

Carotid Endarterectomy vs Carotid Stenting

Table 20. Meta-analysis of 30 day outcomes in 10 randomised controlled trials (RCTs) on patients with symptomatic carotid artery disease comparing carotid artery stenting (CAS) with carotid endarterectomy (CEA)

	Death	Stroke	Death / stroke	Disabling stroke	Death / disabling stroke	MI	Death / stroke / MI
RCTs / patients $-n$	9 / 4 257	9 / 5 535	10 / 5 797	6 / 4 855	5 / 3 534	6 / 3 980	6 / 3 719
CAS (95% CI) - %	1.9(1.4-2.6)	8.5 (5.9-12.1)	9.3 (6.8-12.6)	3.3 (1.6-6.7)	5.2 (3.0-8.9)	0.8 (0.5-1.4)	8.4 (5.0-13.8)
CEA (95% CI) - %	1.4 (0.9-2.0)	4.6 (3.3-6.4)	5.1 (3.7-6.9)	1.8 (1.1-3.1)	3.2 (2.5-4.1)	1.6 (1.0-2.3)	5.1 (4.1-6.3)
OR (95% CI)	1.38 (0.8-2.3)	1.73 (1.4-2.1)	1.71 (1.4-2.1)	1.35 (0.9-2.0)	1.42 (1.0-2.0)	0.50 (0.2-1.0)	1.61 (1.2-2.1)

ted shading indicate a statistically significant result favouring CEA. MI = myocardial infarction; OR = odds ratio; CI = confidence intervals. CREST-1; EVA-3S; ICSS; Kuliha; Naylor; Brooks; Steinbauer; SPACE-1; SAPPHIRE; Wallstent.

Reproduced with permission from Batchelder A, Saratzis A, Naylor AR. Overview of Primary and Secondary Analyses from 20 randomised ontrolled trials comparing carotid artery stenting with carotid endarterectomy. *Eur J Vasc Endovasc Surg* 2019;**58**:479–93.

Carotid Endarterectomy vs Carotid Stenting

Table 21. Meta-analysis of 30 day outcomes after carotid artery stenting (CAS) versus carotid endarterectomy (CEA) in four randomised controlled trials (RCTs) which randomised more than 500 patients with symptomatic carotid artery disease,

	Death	Stroke	Death / stroke	Disabling stroke	Death / disabling stroke	МІ	Death / stroke / MI
RCTs / patients $-n$	3 / 3 413	4 / 4 754	4 / 4 754	4 / 4 754	3 / 3 413	3 / 3 551	2 / 3 031
CAS (95% CI) - %	1.2(0.5-2.9)	7.8 (6.8-9.0)	8.7 (7.6-9.9)	3.3(2.6-4.1)	4.3(3.4-5.4)	0.7 (0.4-1.3)	8.0 (5.9-10.7)
CEA (95% CI) - %	0.9 (0.5-1.5)	4.8 (4.0-5.7)	5.5 (4.7-6.5)	2.4 (1.8-3.1)	3.2 (2.5-4.2)	1.0 (0.3-3.1)	5.2 (4.2-6.5)
OR (95% CI)	1.67 (0.9-3.2)	1.66 (1.3-2.1)	1.61 (1.3-2.0)	1.39 (0.9-2.0)	1.38 (0.9-2.0)	0.51 (0.3-1.0)	1.60 (1.2-2.1)

Red shade: statistically significant result favouring CEA. MI = myocardial infarction; OR = odds ratio; CI = confidence interval.

^{*} Carotid Revascularization versus Stenting Trial (CREST) -1; Endarterectomy versus Stenting in patients with Symptomatic Severe carotid Stenosis (EVA-3S); The International Carotid Stenting Study (ICSS); Stent Protected Angioplasty versus Carotid Endarterectomy (SPACE) -1.

[†] Reproduced with permission from Batchelder A, Saratzis A, Naylor AR. Overview of Primary and Secondary Analyses from 20 randomised controlled trials comparing carotid artery stenting with carotid endarterectomy. Eur J Vasc Endovasc Surg 2019;58:479–93.

Carotid Endarterectomy vs Carotid Stenting

Table 22. Age and 30 day rates of death or stroke after carotid endarterectomy (CEA) and carotid artery stenting (CAS) in patients with symptomatic carotid artery disease randomised within The International Carotid Stenting Study (ICSS), Carotid Revascularization versus Stenting Trial (CREST), Endarterectomy versus Stenting in patients with Symptomatic Severe carotid Stenosis (EVA-3S), Stent Protected Angioplasty versus Carotid Endarterectomy (SPACE)*

Age – y	CAS		CEA	CAS vs. CEA	
11100-07	30 d death or stroke	HR (95% CI)	30 d death or stroke	HR (95% CI)	HR (95% CI)†
<60	13 / 407 (3.2)	1.0 [‡]	21 / 407 (5.2)	1.0 [‡]	0.62 (0.31-1.23)
60-64	20 / 351 (5.7)	1.79 (0.89-3.60)	18 / 341 (5.3)	1.01 (0.34-1.9)	1.07 (0.56-2.01)
65-69	31 / 462 (6.7)	2.16 (1.13-4.13)	18 / 422 (4.3)	0.81 (0.43-1.52)	1.61 (0.90-2.88)
70-74	58 / 480 (12.1)	4.01 (2.19-7.32)	26 / 436 (6.0)	1.20 (0.68-2.13)	2.09 (1.32-2.32)
75-79	48 / 403 (11.9)	3.94 (2.14-7.28)	30 / 461 (6.5)	1.29 (0.74-2.25)	1.91 (1.21-3.01)
≥80	36 / 290 (12.4)	4.15 (2.20-7.84)	16 / 291 (5.5)	1.09 (0.57-2.10)	2.43 (1.35-4.38)

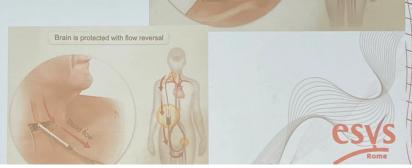
Data are presented as n (%) unless stated otherwise. HR = hazard ratio; CI = confidence interval.

^{*} Data derived from Howard. 169

 $^{^{\}dagger}$ Age based HR calculation for CAS compared with CEA. If HR is < 1.0, CAS is associated with lower peri-operative death/stroke. If HR is > 1.0, CAS is associated with higher rates of peri-operative stroke or death.

[‡] All HR age based calculations compared against age < 60 years.

Recommendation 37		
It is recommended that most patients who have suffered carotid territory symptoms within the preceding 6 months and who are aged >70 years and who have 50—99% stenoses should be treated by carotid endarterectomy, rather than carotid stenting	1	Α
Recommendation 38		
When revascularisation is indicated in patients who have suffered carotid territory symptoms within the preceding 6 months and who are aged <70 years, carotid stenting may be considered an alternative to endarterectomy, provided the documented procedural death/stroke rate is <6%	lib	Α
Recommendation 39		
Carotid endarterectomy or carotid stenting are not recommended in symptomatic patients with a chronic internal carotid near-occlusion, unless associated with recurrent ipsilateral symptoms (despite optimal medical therapy) and following multidisciplinary team review	III	С



TCAR/Asymptomatic Carotid Stenosis

- Several registries showed favorable
 TCAR outcome compared to
 transfemoral CAS or even CEA in
 ACS patients.
- ROADSTER 1
- ROADSTER 2
- SVS/VQI Data
- SVS/VQI/TCAR Surveillance Project(TSP)

TCAR/Asymptomatic Carotid Stenosis

- 30-day perioperative stroke rate
 of 1-2% and stroke/death rate of
 1 to below 3%.
- Most if not all reporting 30 days up to one year data.
- Longer follow up is needed.
- Recently CMS approved TCAR fo standard risks patients.

Take home messages

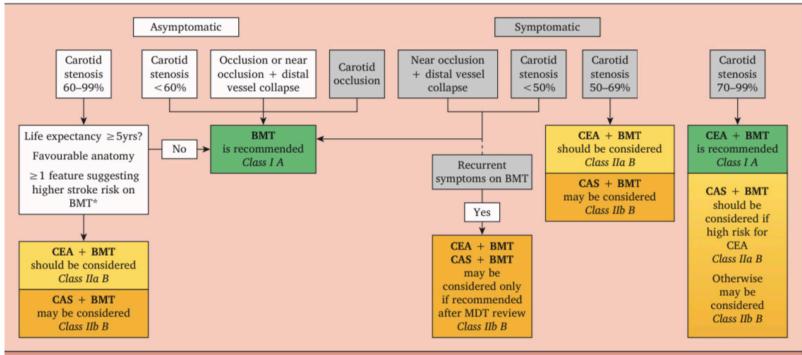


Figure 2. Management of "average risk" patients with asymptomatic and symptomatic carotid stenoses with best medical therapy (BMT), carotid endarterectomy (CEA), and/or carotid artery stenting (CAS). See Table 8 for imaging/clinical criteria that confer an increased risk of stroke on BMT.

